113 research outputs found

    Conceptual Development About Motion and Force in Elementary and Middle School Students

    Get PDF
    Methods of physics education research were applied to find what kinds of changes in 4th, 6th, and 8th grade student understanding of motion can occur and at what age. Such findings are necessary for the physics community to effectively discharge its role in advising and assisting pre-college physics education. Prior to and after instruction the students were asked to carefully describe several demonstrated accelerated motions. Most pre-instruction descriptions were of the direction of motion only. After instruction, many more of the students gave descriptions of the motion as continuously changing. Student responses to the diagnostic and to the activity materials revealed the presence of a third “snapshot” view of motion not discussed in the literature. The 4th and 6th grade students gave similar pre-instructional descriptions of the motion, but the 4th grade students did not exhibit the same degree of change in descriptions after instruction. Our findings suggest that students as early as 6th grade can develop changes in ideas about motion needed to construct Newtonian-like ideas about force. Students’ conceptions about motion change little under traditional physics instruction from these grade levels through college level

    Student understanding of rotational and rolling motion concepts

    Full text link
    We investigated the common difficulties that students have with concepts related to rotational and rolling motion covered in the introductory physics courses. We compared the performance of calculus- and algebra-based introductory physics students with physics juniors who had learned rotational and rolling motion concepts in an intermediate level mechanics course. Interviews were conducted with six physics juniors and ten introductory students using demonstration-based tasks. We also administered free-response and multiple-choice questions to a large number of students enrolled in introductory physics courses, and interviewed six additional introductory students on the test questions (during the test design phase). All students showed similar difficulties regardless of their background, and higher mathematical sophistication did not seem to help acquire a deeper understanding. We found that some difficulties were due to related difficulties with linear motion, while others were tied specifically to the more intricate nature of rotational and rolling motion.Comment: 23 pages, 3 figures, 2 tables; it includes a multiple-choice test (in Appendix B

    Applying a resources framework to analysis of the Force and Motion Conceptual Evaluation

    Get PDF
    We suggest one redefinition of common clusters of questions used to analyze student responses on the Force and Motion Conceptual Evaluation (FMCE). Our goal is to move beyond the expert/novice analysis of student learning based on pre-/post-testing and the correctness of responses (either on the overall test or on clusters of questions defined solely by content). We use a resources framework, taking special note of the contextual and representational dependence of questions with seemingly similar physics content. We analyze clusters in ways that allow the most common incorrect answers to give as much, or more, information as the correctness of responses in that cluster. Furthermore, we show that false positives can be found, especially on questions dealing with Newton's Third Law.Comment: 13 pages, 7 figures, submitted to Phys. Rev. ST Phys. Educ. Res; Revised: 12 pages, 9 figures, submitted to Phys. Rev. ST Phys. Educ. Res., altered content and focu

    Learning to Teach Argumentation: Research and development in the science classroom

    Get PDF
    The research reported in this study focuses on an investigation into the teaching of argumentation in secondary science classrooms. Over a one-year period, a group of 12 teachers from schools in the greater London area attended a series of workshops to develop materials and strategies to support the teaching of argumentation in scientific contexts. Data were collected at the beginning and end of the year by audio and video recording lessons where the teachers attempted to implement argumentation. To assess the quality of argumentation, analytical tools derived from Toulmin's argument pattern (TAP) were developed and applied to classroom transcripts. Analysis shows there was development in teachers' use of argumentation across the year. Results indicate that the pattern of use of argumentation is teacher-specific, as is the nature of change. To inform future professional development programmes, transcripts of five teachers, three showing a significant change and two no change, were analysed in more detail to identify features of teachers' oral contributions that facilitated and supported argumentation. The analysis showed that all teachers attempted to encourage a variety of processes involved in argumentation and that the teachers whose lessons included the highest quality of argumentation (TAP analysis) also encouraged higher order processes in their teaching. The analysis of teachers' facilitation of argumentation has helped to guide the development of in-service materials and to identify the barriers to learning in the professional development of less experienced teachers

    Using resource graphs to represent conceptual change

    Full text link
    We introduce resource graphs, a representation of linked ideas used when reasoning about specific contexts in physics. Our model is consistent with previous descriptions of resources and coordination classes. It can represent mesoscopic scales that are neither knowledge-in-pieces or large-scale concepts. We use resource graphs to describe several forms of conceptual change: incremental, cascade, wholesale, and dual construction. For each, we give evidence from the physics education research literature to show examples of each form of conceptual change. Where possible, we compare our representation to models used by other researchers. Building on our representation, we introduce a new form of conceptual change, differentiation, and suggest several experimental studies that would help understand the differences between reform-based curricula.Comment: 27 pages, 14 figures, no tables. Submitted for publication to the Physical Review Special Topics Physics Education Research on March 8, 200

    The influence of learning styles on knowledge acquisition in public sector management

    Get PDF
    This research note outlines a project designed to investigate the role of training institutions in providing effective training and development programmes for managers. The investigation is being carried out in the light of recent criticisms levelled against the nature of formal learning environments prevalent in most institutional settings. The traditional role of trainers and developers as the providers of knowledge and skills for the development of competent managers runs contrary to recent findings, which suggest that managers learn more effectively in informal settings, rather than the formal settings evident in many development programmes. The idea that explicitly extracted competencies are the target every manager should aim for to improve their effectiveness is also challenged because competencies alone are no longer regarded as a sufficient criterion for success. Recent research has attached greater importance to the need for helping managers to see knowledge as a social phenomenon, and one factor that might distinguish successful managers from others is tacit knowledge (Wagner & Sternberg, 1987; Argyris, 1999). A major focus of this study is to explore the possibility that the level and content of tacit knowledge acquired by managers may be influenced by their individual learning styles, and the degree to which their dominant styles are matched with the context of their work environment

    Exploring marine ecosystems with elementary school Portuguese children: inquiry-based project activities focused on ‘real-life’ contexts

    Get PDF
    The purpose of the study was to investigate how young students engage in an inquirybased project driven by real-life contexts. Elementary school children were engaged in a small inquiry project centred on marine biodiversity and species adaptations. All activities included the exploration of an out-of-school setting as a learning context. A total of 49 students and 2 teachers were involved in the activities. The research methods included observation, document analysis and content analysis of the answers to a questionnaire and an interview. The results revealed that most of the students acquired scientific knowledge related to biological diversity and adaptations to habitat. Moreover, students progressively demonstrate greater autonomy, argumentative ability and decision-making. One implication of the present study is that elementary science curriculum could be better managed with inquiry projectbased activities that explore different types of resources and out-of-school settings.info:eu-repo/semantics/publishedVersio
    • 

    corecore